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A stability criterion for Hamiltonian
systemswith symmetry

YONG-GEUNOH

Departmentof Mathemati~,Universityof California, BerkeleyCA 94720USA

Abstract. We find a simple criterion for orbital stability for the general
hamiltonian systems with symmetry in the equivariant symplectic and
in thecorrespondingPoissoncontext.

INTRODUCTION

This paperpresentsa theorem which gives a simple criterion for the orbital

stabilty and instabilty of the relative equilibria of theHamiltonian system with

symmetryandits versionin thePoissoncontext.

It is well-known that for the genericHarniltonian system,the only way of
proving the stability of the equilibria is provingthestrict convexity of theHamil-

tonian at the equilibria. When theHamiltonian hasa symmetry and the equili-

brium is not a fixed point of thesymmetry group, then the Hessianalways has

somekernel. In this case,it is reasonableto investigatethestability questionup

to symmetry,i.e. orbital stability. This is equiivalentto investigatingthestability

of theequilibria in the reducedspace.

However, in manypracticalproblems,it is easierto work in theoriginal space

using the so called <<Energy-Casirnirmethod>> [4J, sinceit is not simple to pam-

metrize the reducedspace.When we apply theEnergy-Casimirmethod,however,
we have to deliberately choosethe Casimirsfor thestability andwe haveto carry
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out some extra work like the linearizedanalysesor finding some Lyapunov
functionfor the instability.

In this paper,we will presenta direct criterion without involving the analysis
of the linearizedHamiltonianvector field for stability and instability of therela-
tive equilibria, bothin the S’-equivanantsymplecticcontextandPoissoncontext

with codimension one regular symplectic leavesand generalizethis to larger
groups.This is motivated by works on non-linearwaveand SchrOdingerequations
(See[2], [3], [5], [7] and [10], especially[3]). Wewill alsoapply this criterionto

the free rigid body recoveringthe well-known stability criterion from classical
mecahanicsandto the planarcoupledrigid bodies.

We may considerthe result in this paperasa complementarywork for Energy-
Casimirmethod [4] and asa geometricadaptationof the one in [3].

We would like to thankJerry MarsdenandAlan Weinsteinfor their interestand

helpful suggestionson this work and to W. Straussfor sendingme a preprint of
their paper[3].

I. STATEMENT OF ThE RESULTS

Let (M, ~, G, J) be a Hamiltonian G-spacewith G-invariant metric andH a

G-invariant Hamiltonian function. (Here, &2 is the symplectic form on M andJ

is themomentmappingassociatedto thesymplecticG-action).Thenthe Hamilto-

nian system,

dv
(lil) —=XH(x).

dt

dropsto the reducedspaceJ1 (i)/G~,where G~is the isotropygroup of ~.z.The
equilibria of the reducedsystemare called relative equilibria of thesystem(1.1).

Since it is quite troublesometo parametrizethe quotient spaceJ

anotherdescriptionof the relativeequilibria is often useful,especiallyfor stability

questions.SinceJ is invariantundertheH-flow, the relativeequilibria are given

by theequation,

(1.2) dIJ(x)=<~,dJ(x)>

for some eg,~whereg is theLie algebraof G,~(See[1]).

Let x~be a correspondingrelative equilibrium. Then we have the following

proposition.

PROPOSITION 1. The curvea(t) = exp t~ x~givesa solution of the equation

(1.1).
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Proof

da d
— (t)= —expt~~x~
dt dt

= exp t~

= exp t~ X< ~> (xc)

by the definition of the moment map.However, we getX< ~> (xc) = XH(x~)

from equation(1.2). Therefore,

da
— (t) = exp t~ XH(x~)
dt

= exp t~ X11(exp — t~ exp t~. x~)

= XH(exp t~ x~)(from the equivarianceof H)

=XH(a(t)) •

Remark The aboveway of finding solutions of the system(1.1) is very com-
monly used in the waveand Schrödinger(either linear on non-linear)equations.

First, let us considerthe casewhen G = S’. Denote w as an elementin R
which is the Lie algebraof S’ and L~ =H— wJ. By (1.2),dL~(x~,,)= 0 andso
the Hessianof L~,d

2L~(x~) is well-defined.
Considerthe quadraticform inducedfrom d2L~

0(x~) on TIM. From the
symmetry,d

2L~(~si(x~)) = 0. It is easyto check,at leastin finite dimension
that if d2L~(x~,,)is positive definite in a complementryspaceof the spanof
~ i(x ) then the abovesolution is orbitally stable.However if d2L (x )hasS wo wo ~-‘O

somenegativeeigenspace,it is not clearat all whetherthe orbit is stableornot.

In Grillakis et al. [3], a simple criterion is noticed for stability and instability
which hasbeenimplicitly usedin many literatureson non-linearstability of the

wave and SchrOdingerequationswhen d2L~(x~)hasonly one simplenegative
(resp. positive) eigenvalueand all the othersare positive (resp. negative)except

theabovetrivial zero eigenvalue.

THEOREM 1. (See [3]). Assumethat there is a smoothfamily of relative equi-

libria x~dependingon w nearw
0. Assume

dJ(x~)~ 0.

whereJ is the moment,napping. Definea function d(w) = H(x) — wJ~x)
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near and assumethat d
2L~(x~,,)has onedimensionalnegativeand obvious

onedimensionalzerospace. Then,

i) ifd”(~.
0)> 0,x~ is orbitally stable.

ii) ifd”(w0) < 0,x~ is orbitally unstable.

Remark. i) One interestingfeature of this theoremis that it doesnot involve

the eigenvalueanalysisof the linearizedHamiltonian vector field at x which is

usually necessaryto check the linear or non-linearstability, but it only involves
the analysisof the Hessianand anauxilliary functionof onevariable.

ii) We canalso apply this criterion to the casewherethe Hessianhasonly one

positiveeigenvalueby considering—Lwand.—d”(w).
iii) The hypothesisthat we havea smooth family of relativeequilibriais not

restrictive at all since it will be automaticallysatisfied if we haveone relative

equilibriumx~ andd
2L~(x~)is invertible on S’-quotient.

Next, let us consjderthe case for larger groupstatedin the beginning of this
section.Assumethat thereis a smoothfamily of solutionsx(~)of the equation

dH(x)—< ~, dJ(x)> = 0

in a neighborhoodof in g,
2 wherex(~0)= x0 is thegivenrelative equilibrium.

Definethe functionB(s)on g~near~ by

B(s) = H(x(~))— < ~, J(x(~))>

anddefi.neL~onMby

L~(x)=H(x)—<~,J(x)>.

Here,sincewe only needthis function in a neighborhoodof x0,thelocalexistence
of J is sufficient for our purpose.Then we have the following generalizationof

theorem1.

THEOREM 2. Assumethat

i) the(negative)inertia index of d
2L~(x

0)is lessthan equal to dim

ii) theinclusion g~ x0 C ker d
2L~(x

0) is an equality,
iii) ~ = J(x0) is in a regular (maximal) leaf

ii’) d
2B(~

0)is positivedeginiteon

Then,the relativeequilibrium x0 is (orbitally) stable.

Remark. i) As will be seenin the course of proof, the hypothesesi) and iv)
together imply the equality in the hypothesisi) and so theorem 2 implies i) of

theoremI.

ii) If the group G is abelian, every j.i is regular and so the hypothesisiii)
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is automaticallysatisfied.
iii) We suspect that if d

2B(~
0)is still nondegeneratebut has odd number

of negativeeigenvalues,then the equilibrium is (Lyapunov) unstable,but we
couldnot proveyet.

Now we summarizethe contentof the paper.We give the simplified proof of

theorem 1 in the finite dimensionalcaseessentiallyfollowing the ideaof [3] in
section 2 for those who feel uncomfortablewith the technicalitiesarisingfrom

the inflnite dimensionsas in [3], apply the criterion to the stability questionsof
the free rigid body and coupledplanarrigid bodiesin section3 andthengive the
proofof theorem2 in the lastsection.

2. PROOFOFTHE ThEOREM 1

We will prove the first part of theorem1. First, let us derive severala priori

identities from the definition and assumptions.By definition of x~,we have

the following equality,

(2.1) dL(x)=dH(x)—c~ dJ(x()=0.

Differentiatingthis equationwith respectto w, weget the following,

dx dx
0 = d

2H(x~) —~ — ~ d2J(x). — dJ(x~).
dw dw

In otherwords,

dx dx dx
d2L(x). —~ = d2H(x~).—~ — w d2J(x~).

(2.2) dw dw dw

= dJ(x).

Strictly speaking,we have to introducea connectionto definethe Hessianof H

and J at x and to haveeach term of middleof (2.2) makesensebut the LHS
(or RHS) itself does not depend on the connection and so the middle itself
doesnot.

Now, let P be the positive eigenspaceand ~i be the negativeeigenvectorof

d2L~(x~)of unit length with eigenvalue— A2 < 0 with respectto an S1-in-
variantmetric.

2.1. Stability

LEMMA 1. Decomposeorthogonally

KerdJ(x~)= spanof {~
5i~x~)}~Q.
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where ~
5i(x~) is the vector field generatedby S’. Then d

2LWIQ is positive

definite.

Proof Differentiating

d(w) =H(x~)—wJ(x)

we get by (2.1)

dx dx
d’(w)=dH(x~)~ —~ —J(x )—wdf(x). —~

(2.3) dw dw

=—J(x~)

since x~is a relative equilibrium. Differentiating again,

dxw
d (w)=—dJ(x)~-—---—

dw
(2.4)

dx dx(,) (,)

=—<dL~(x~)~— ,—>

dw dw

from (2.2). From the assumption, d”(w
0)> 0, we have

dx dx
(2.5) <d

2L —a , —~ > <0.
W0 dw dw

Decompose orthogonally

dx
—~ (w

0)=a~+b~5i+p
dw

for some p E P with a ~ 0 from (2.5). Substitutethis backinto (2.5) and get

(2.6) —a
2X2 +<d2L~p,p><0.

Now,let u E Q, i.e. vI ~ i(x~) andv E Ker dJ(x~) andwrite

V = a’i~+ p’

wherep’ EP. By (2.2),

0 = <dJ(x~),v>

dx
= <d2L~(x~) ~

(2.7) dw

= < d2L (x~)(a77+ b~
5i+ p), a’i~+ p’>

= —aa’A
2+ <d2L~(x~)p,p’>.
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Therefore,

<d
2L~,~jx~,~,)v,v>= —a’~A2+ < d2L~

0p’,p’>

<d
2L p,p’>2

<d2L~p, p)

(aa’X2)2
>—a’2X2+ =0.

a2 A2

For the first inequality, we used the Schwarz’ inequality since d2L~(x~
0) is

symmetricandpositivedefinite on P. For thesecond,we used(2.6)and(2.7). .

One immediateconsequenceof this lemmais that the negativeeigendirection
is transversalto Ker dJ(x0).

Proof of the stability: Since J is conserved,4 o J is conservedfor any smooth

function c1 on R. We are going to usethe standardEnergy-Casimirmethod [4].

First,wewill choose4 sothat thefunctionH(x) + (4 o J)(x) satisfies,

dH(x~,,)+ cI~’(J(x~)).dJ(x~)= 0,

i.e.

= —

Secondly,we require its secondvariation to be positivedefinite on

However,thesecondvariationis

d
2H(x~,

0)+ 4’(J(x~).d
2J(x~

0+ ~“(J(x~,,)). dJ(x~,,0)® dJ(x~,0)

= d
2L~,,(x~,)+ ~“(J(x~,,))~ dJ(x~

0)® dJ(x0,0).

We know by lemma 1 that d
2L(x~,,)IQ is positivedefinite andaddingthe second

term doesnotaffectthis factsince

dJ(x )=0(~20

in Q C Ker dJ(x~).Now, all we have to takecareis the negativeeigendirection.
For that, choosecI”(J(x~)) sothat

A2
4”(J(x ))>

° (dJ(x~,,)(~))2

which is certainlypossible.Therefore,x~ is orbitally stable.
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2.2. instability

LEMMA 2. If wehavethat d7(w
0)< 0,. then there existsu suchthat

<d
2L~(x~,)u,u> <0

anddJ(x )u 0.we

Proof Let i~ be the unit eigenvectorwith negativeeigenvalue,17w be the

parallel translatealong the 1-parametercurve x~and let 7js) be the geodesic
with ‘y~,,(O)= x~and ‘y~(0) = i~. Consider the function q(s, w) =

Wehave

aq 8
— (0, w

0) = dJ(x~0).— 7~(0)
8w 8w

C.) = Wçj

(2.8) dx~
=dJ(x ).~wo dw

C.) =

by (2.4) and the definition of d. By the implicit function theorem,there is a

smooth function w(s)suchthat

(2.9) = J(xw), w(0) =

If u = ~ ~ differentiating (2.9) yields

(2.10) dJ(xw).u =0.

Moreover,u ~ 0 since

= ~

= ‘Y~.)(O)+ — ~~(0)~ w’(O)
8w

C.)

dx

= + w’(O) —~ (w0).
dw

Indeed,from theassumptionthat d”(w0) < 0, it follows that

dx dx
<d

2Lw(xw)• —~ (~), —~ (w
0)>>Ofrom(2.4).

dw dw
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Now, d2 I
<d2L (x )u, u>= — I Lw(,)(’Yw(g)(S))w

0 w0 ds
2

d2 I
=

(2.11) ds2

(sinceJis constantalong ~w(;)~~

d2

L {H(7(,) (s))— H(X)}.

Note that H(’YW(S)(s))— H(XW(O)) vanishesup to order2 since‘~~(o)~°~= and

dl dl

— H(7(,)(S)) = dH(x ) — 7W(S)(S)
ds Is=O ds 1s=O

=w dJ(x )u=0
0 w

0

by (2.10).Therefore,

d
2 I

<d2L (x )u, u ) = —ds2 l:=0
(2.12)

I
= lim — (H(y fl(s)) —

:~~02s~

Now,

I
L(7(S)) = L(X) + s dLw(X )i~ +w w — <d2L(x)~, 11(rn) > + o(s2)

1
= L (x ) + — s2 < d2L~(x ),~ i’~ > + o(s2)w

‘~‘~‘ 2

Therefore,

H(y ) = W(S)J(7 (s)(S)) + d(w(s))w(:)

1
+ — s2 <d2L()(X())??(), ‘lw(z) > + o(s2)

2
(2.13)

= w(s)J(x ) + d(w(s))

I
+ — s2< d2L (g)(Xw(s))1?w(:)~~w(:) >~0(5)

2 C.)
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from the definition (2.9) of w(s).Sinced”(w
0) < 0,

d(w(s))< d(w0) + (w(s)) — w0) d’(w0) for smalls,

= H(x)— w(s)J(x)

by the definitionof d and(2.3). Substitutingthis into (2.12),weget

(2.14) H(~~(S))< H(X~)+ ~2 < d
2 L~(X~)• ~w(z)’ 71w(s)> + 0(52).

Moreover,wemay assumethat

(2.15) <d2LW(,)(xW(S))71W(S), ~ > ~ — <d2L~~ ~wo> <0

by.continuity.Now,substitute(2.14)into (2.12)anduse(2.15) to get

<d2L(X)U, u> ~ — <d2L ~1, flwo> <0.

One immediate consequenceof this Lemma is that on the reducedspace,

the reducedHamiltonian has one negativeeigenvalueand all the otherpositive

eigenvalues.
Now, the instability theoremfollows from the following generalfact which

actuallyprovesthe spectralinstability on the reducedspace.

LEMMA3. Let M be a symplectic manifold and H be a Hamiltonian function.

Assumethat dH(x) = 0, d2H(x) hasodd numberof negativeeigenvalues,andall
the othereigenvaluesare positive.

Then x is spectrally unstableand so non-linearly (or Lyapunov)unstable.

Proof Choose Darboux coordinatesnear x. Then DXH(x) can be written as
~ 1. d211(x)where

0 I
1 =

—I 0

and d2H(x) is consideredas a map from T~Mto TM. Therefore,

det DXH(x) = det(fl~ . d2H(x)) = det ~ det(d2H(x))< 0

since det &2~>0 and det d2H(x) < 0 from the assumption.Therefore,DXH(x)

should have at least one (and so two) real eigenvalues and so is spectrally unstable.
For, if DXH(x) has no real eigenvalue,then det DXH(x) must be positive since



A STABILITY CRITERION FOR HAMILTON IAN SYSTEMS WITH SYMMETRY 173

the eigenvaluesof DXH(x) are groupedas { A, X) whenA is purely imaginaryor

{A, A, — A, — A} whenA is notpurely imaginary. In any case,the productsof these
pairsor quadruplesare all positiveandso detDXH(x) would bepositive. .

The proof of the instability theoremis now an easy consequenceof lemma 2

and 3 by working on the reducedspace.

Remark. It may be interestingto study if the instability result in [3] is due to
spectralinstability like herein the finite dimensionalcontext.

2.3. Refinementin thePoissonCategory

Be!ore we apply theorem 1 to planar coupled rigid bodies, we adapt our
theoremto Poissonmanifoldswith codimensiononesymplectic leavesat regular
points. In fact, our theoremwill be just a special caseof this adaptationsince

MIS’ hasa naturalPoissonstructurenearregularpoints.
Let P be a Poissonmanifold with codimensiononesymplecticleavesat regular

points,H be a Hamiltonianfunction and p be an equilibrium. Assumethatp is a
regularpoint.

Let C be a given Casimir function whoselevel setsare symplecticleavesnear
p. Then,by the Lagrangemultiplier theorem

dH(p) ~ dC(p)= 0

for some w,~E R. Assumethat we havea smoothfamily of equilibria Pw near

p~=panddefineLw by

Lwo(P) =H(p)— w0C(p).

Assume that d
2L~(p) has one negative eigenvalueand all the others are

positive. If we define

d(w) =H(p)— WC(Pw)~

then we have the same criterion for the stability in this Poissoncategoryas in
our main theorem.

3. APPLICATIONS

3.1. Thefreerigid body.

Here,we will follow the materialin [4, p. 11 - 13].

Theequationsof freerigid body motionare given by
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dm
(3.1) m’=— =mxw

dt

where w is the angularvelocity andm is the angularmomentum,bothviewedin

the bodycoordinatesystem.Therelationbetweenm andw is givenby

m.=I~w
1 1=1,2,3

where1 = ~‘i’ ‘2’ 13) is the diagonalizedmomentof inertiatensor.We canconsi-
der this system as ~cHamiltonian>>in the Lie-Poissonstructurein R

3(~so(3))
1

with the HamiltonianH(m) = ~ .-~L Note that theregularleavesof so(3)

are concentricspheresof codimensiononeandso we mayapply our criterionto

1ImI2
checkthe stability. The Casimirsare the functionsof the form C~(m)=

Let us chooseC = (~ I m 122 where wechoosethis ratherthan f m 2 so
that the Hessianof the correspondingLw benon-degenerate.Now considerthe
equilibriume = (1,0,0). Then,

(3.2) dH(e) = —. , 0, 0

I’

(3.3) dC(e) = (2, 0, 0)

SetL =H—wCand w~= ~-~- . Choose~ =( ~_L , o, o). Therefore,

d(w) = H(e~)—wC(e~)

1 1

— 4wI~ 8wI~

8wF
1

Differentiatingthis twicewe get,d”(w) = 4,23 andso,

(3.4) d”(w0) = 2I~ >0

from the above. Now, consider the Hessian d
2L~,,(e).By simple computations,

weget

1 1 1 1 1
<d2L~(e).ôm, ~mn>=(-~~-- — _)(6m

2)2 +(...... — _)(öm3)2_~— (6m1)
2
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sinceL =H— — C.
2I~

i) Theeasel1>‘2”1 >13:
In this case, d

2Lw(e) has two positive eigenvaluesand one negative eigen-
value. Sinced”(w

0) = 2I~ > 0 from (3.4), we canconcludethat (1,0, 0) is stable

by our theorem.
ii) Theeasel2<11<13 (on3 <1~<12):

In this case,d
2L~ hastwo negativeeigenvaluesandone positive eigenvalue.

Hence,by (3.4) and the remarkii) afterour theorem1 ,thisequilibriumisunstable.

iii) The easel
1<12,11 <13.

In this case,d
2L~ is negativedefinite and so stablewithout referringto our

criterion.

3.2. Stabilityof CoupledPlanarRigid Bodies

In this section, we are going to follow the notationsof [8, 9]. We restrict
ourselvesto the easel~> 0, r > 0, i.e. the easethat the centerof massof the

secondbody is aligned with the two hinge points and betweenthe two points
in thereferenceconfiguration.(SeeFigure 1).

After we reduce the systemby translation of centerof massand the total
angular momentum, we get a system on T*(Sl x S’ x S1 )/51 whichis a Poisson
manifold whose symplectic leavesare of codimension one. The total angular
momentum ci, and its functionsare the Casimirfunctionsonthis manifold. (This
can be easily seenfrom the definition of quotientbracketandthe fact that any
function on this quotient can be consideredas an S1-invariantfunction and

brackets of ci, with such functions in T*(Sl x S’ x 51) vanish by Nöther’s

theorem).
As in [8], we parametrizeT*(Sl x ~1 x 51)/Si by ~ 032, ~ ~ p3))

and thewe canwrite the HamiltonianH(0, p) asfollows;

1 1
H(0,M)= —<p,J~L> =—<w,Jw>

2 2

where J is the associatedmetric on S’ x S~x S’ which dependson system

parameters.And the total angularmomentumis

c1(0, p)= i.i~+ p
2 + 113.

The relativeequilibria will bedescribedby the equation

dH— w d4 = 0

for somew. The aboveequationcan be decomposedinto followingtwo equations;
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current conflguration.

body 1 body 2 body 3.

(I~X~IXII)
reference configuration

Figure1.

(3.5) d~H—wd,~i,=0

(3m6) d0H=0

From (3.6),

0=d9H= —

(3.7) 1

——

2

From(3.5),

J~p=w(l, I, I),i.e. p=caJ(1, 1,1)

Substitutingthisinto (3.7), weget theequation

c~~
2<(1; 1,1), d

0J(l, 1, 1)>=r0

Thisequationcanbe written as follows (See[8]);
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(023, 032) = (ir, 0) (~2I’ 032) = (0, ~) ~21’ 032) = ~ ~)

Figure2.

sin(021 + 032) = — r sin(021)
(3.8)

sin(032) = K sin(021)

In [8, 9], it wasshownthat if K T —11 or i~ r + i~,then(3.8)hasonly

the solutions

(021,032) = (0, 0), (ir, 0), (0, ir) and (ir, ir)

and if r — 1 <K <~r + 1 , (3.8)hastwo moresolutionsbesidestheaboveas
follows:

i) (021, ~32~ = (0, 0); the Hessianof H is positive definite and so this equili-

brium is stable.
ii) (02,, 032) = (lr, 0); the Hessianhasjust onenegativeeigenvalueif K ~ r + 1.
iii) (021, ~32~ = (0, ir); the Hessianhasjust onenegativeeigenvalueif K ~ I — r.
iv) (021, 032) = (ir, ir); the Hessianhasjust onenegativeeigenvalue if K ) r— 1.

Therefore,we can apply our instability theoremto eachof thesecases.All we
haveto do is to checkthe signof d”(w) where

d(w) =H(x)— w~(x~)for X = (0, ~
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Here,we know (see[7]) that

°w = const. which is amongthe above

Mw’(0w<w,o)>(~1(0w)< 1,1,1>

Now,

H(X) = <P~J~(0)p>

= w2< (1 1, i),J(0)(l, 1,1),>

ci~(Xw)=Pwi+11w

2 +11w 3 <Pw~(I~ 1,1)>

=w<(l, 1, l),J(0)(l, 1,1)>

Therefore,

d(w)=— — w
2<(l, 1, l)~J(0w)(l~1,1)>

andso,

d”(w)=— —<(1,1, l),J(0C.,)(l, 1, 1)><0

since 0 is constantas w varies and J is positive definite. Hence, the relative

equilibria °w = (ir, 0), (0, 7r) and (71, 71) are unstablein each region as above
respectively. In the other region, theserelative equilibria have two negative
eingenvalues and so we cannot apply our theorem to these cases.

Remark Although we cannot apply our theorem to the other cases where the
Hessianhas two negativeeigenvalues,we were ableto provetheseequilibria are

always linearly (in fact, spectrally)unstable in a different method (See[9]).

4. GENERLIZATION FOR LARGERCRCUPS

4.1. Proofof the theorem2

As in the section2, weget the followingidentities:

(4.1) B(s) = H(x(E)) — <~, J(x(~))>

from the definition of B,
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(4.2) dL~(x(U) dH(x(~))—<~,dJ(x(~))>= 0

by the definition ofx(~)andL1,

d
2L (x(~))~~x(~) = d2H(x(~)). öx(~)— <~, d2J(x(~)))’~(43)

= dJ(x(~))

by differentiating (4.1) with respectto ~, where&x(~): g~-+ Tx(t)M is defined by

d
(4.4) bx(~). ~1= — x(~+ t77).

dt

Now, set

P = positiveeigenspaceof d2L
1(x0)

K = kernelof d
2L

1 (x0) = g

N = negativeeigenspaceof d
2L

1(x0)

and denote Hi,,
11K and ~N at the orthogonalprojectionsonto thesesubspaces

of T~M respectively.

LEMMA4. DecomposeKer dJ(x
1)as an orthogonaldirectsum

Ker dJ(x~)= K e Q.

Thend2LIIQ is positivedefinite under thehypothesesof theorem2.

Proof By differentiating(4.1)andusing(4.2)

dB(~)= dH(x(~)).öx(~)— J(x(~))— < ~, dJ(x(~)).~x(~)>
(4.5)

= — J(x(~))

Defferentiatingagain,

d
2B(~)= — dJ(x(~)).

(4.6)
= — < d~L~(x(~))-~x(~), 5x(~)>

from (4.3) for the secondequality. From thehypothesisin theorem2, d2B(~
0)is

positive definite on g~andso the quadraticform <d
2L~(x

1).öx(~0),6x(~0)>

is negativedefinite on g,~,i.e.

<d
2L~(x~)HN~x(~o)n,HN~~0)77>

+ < d~L..(x
0).H~~x(~0)~,fl~~x(~0)> <0
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for all 0 /z ~ E g,~.In particular, the subspace~x(~0) g C TX(l)M is transversal
to P o K since dim N s~dim g~.(Here, in fact, we havedim N dim g~).Now,
let t E Q, i.e. v I K and u E Ker dJ(x(~0))and write v = HNV + H~u.Then by

(4.3),

0 = < dJ(x~),v>

(4.8) =<d
2L

1(x0)~ &x(~0),v>

= < d
2L

1(x(~0))•H~6x(~0),H~,v>+ < d
2L

1 (x0).
11N~0~’11N U>

Since~x(~
0) g,~is transversaltoP o K, we canfind an 37 E g,~suchthat

(4.9) ~ . 77 = HNV

for a given V. Then,

<d
2L~(xo)u,V > = < d2L

1 (x0) HNU, HNV > + <d
2L~(x

0). H~u,fl~v>

<d
2L (x

0)~fl~u,fl~~x(~0)n>2
><d

2Lt(xo).HNV,HNV>+
o <d21~(x

0)-H~~x(~0)ii,H~&x(~0)~>

<d
2L

1 (x0)~H~u,H~ox(~0)n>2

><d
2L. (xo).HNV,HNV>— 0

<d2L
2(x0)~

11N~0~~’HN~0~>

<d2L
1(x0)~HNL~,

11N~0~ >2
=<d2L

1 (x0)~HNV,IINV>
o <d

2L~(xo)~11N~~O~~’HN~0~>

=0.

Here,we used Schwarz’inequality for the first inequality, (4.7) for thesecond
inequality,(4.8) for the secondequalityand (4.9)for thelastequality. .

Proof of the theorem2. SinceJ is (coadjoint)equivariant,ci, oj is conservedfor
any coadjoint invariant, i.e. Casimir function 1 on g*~We canchoose(~ so that

d’i,(J(x
0)) = dcI~(p)=—

which is possiblesincethe leafcontaining11 is regular. (This is oneplacewherewe

usedthishypothesis).The secondvariationof H + c~o J is given as

d
2L

1(x0)+ < d~4(J(x0)~dJ(x0), dJ(x0)>

As in section2, we haveonly to choose‘1 so that

(4.10) <d
24(J(x

0)~dJ(x0), dJ(xo)>IN >— d
2Lt(xo)IN.

By (4.3),we know that
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dJ(x0)= d
2L~(x

0)~~x(~0).

Now, considerdJ(x0)as an elementin T~’M ® g* i.e. eitheras a map from g to

T*MorT Mtog*. Then,
x0 Xo

dJ(x0)I ~PoK
(4.11)

dJ(xo)JN~

by the remark after (4.7). Moreover, the possiblemaximal rank of d
2ci(11) is

dim g~since11 is in a regularleaf (this is anotherplacewherewe usedthishypo-
thesis)andwe canchooseci, so that

(4.12) Kerd2ci,Øz)=g’(rsT~O~)

By (4.11) and (4.12), it is possiblefor < d2ci’(~z). dJ(x
0) > IN to dominate

—d
2L~,(xO)INforasuitablechoiceof4~. .

4.2. Poissonversion

Let P be a Poissonmanifold andp
0 E P an equilibrium in a regularleaf. Let

C1, ..., C,, be local Casimirsnear p0 which are maximally independent.Write
C= (C1. . . Ck ). Let

dH(p0)—<~0,C(p0)> = 0.

where E Rk, and assumethat we havea smooth family p(s) near = and

with p(E0)= p0 whichsatisfiestheequation

dH(p)—<~, dC(p)> = 0

Define L~(p)= H(p) — < ~, C(p)> andB(s)= H(p(~))— < ~, C(p(~))>.Then,

wehavethe following Poissonversionof theorem2.

THEOREM 2’. Assumethat
i) d

2L
1(p0)hasnegativeinertia index ( k

ii) d
2B(~

0)is positivedefinite.
Thenthe equilibrium p,~isstable.

Remark i) It may be interestingto find a similar criterion for the equilibria in

the singular leaf. It seemsthat this is relatedwith transversePoissonstructures.
ii) It can be easily seenthat we can replaceCasimir functions by any con-

servedquantitiesin theorem2’. This allows us to havethe similar criterionfor an
equilibriumin a singularleafif it hassomeextrasymmetries.
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